Game Theory

Chapter 1
Matrix Two-Person Games

Instructor: Chih-Wen Chang
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The Basic

e A game involves a number of players N, a set of strategies for
each player, and a payoff that quantitatively describes the
outcome of each play of the game in terms of the amount
that each player wins or loses.

e A strategy for each player can be very complicated because it
is a plan, determined at the start of the game, that describes
what a player will do in every possible situation.



A Two-Person Zero Sum Game

e |llustration (two players)
— [Player I with n possible strategies (strategyi,i =1,...,n)
Player Il with m possible strategies (strategy j, j=1,...,m)

— Payoff (game) matrix

player 11
_Fl;t}'l:r I Eirutgﬁl Slrul_cg,}' 2 -+ Strategy m
Strategy 1 apy a2 - 1 m
Strategy 2 (121 (132 (12m

Strategy n nl 12 e @ rom

o Qjj:The payoff to player |
— Zero sum games: Whatever one player wins the other player loses.
e If the payoff to player | is a; then the payoff to player Il is — aj;-
— Both players want to choose strategies that will maximize their
individual playoffs.
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Constant Sum Games

e Constant sum games
— If the payoff to player | is @; , then the payoff to player Il isC — &
where C is a fixed constant.
— Inazerosumgame C=0 .

— The optimal strategies for each player will not change even if we think

of the game as zero sum.

e |f we solve it as if the game were zero sum to get the optimal result for player |,
then the optimal result for player Il would be simply C minus the optimal result for .
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Example 1.1

e Pitching in baseball

— Let player | be the batter and player Il be the pitcher. The pitcher can
throw a fastball (F), curve (C), or slider (S), and the batter can expect
one of these three pitches and to prepare for it.

— Payoff matrix

I/11 F C S
F 030 025 020
C 0.26 033 0.28
5 0.28  0.30 0.33
* For example, if the batter looks tor a tastball and the pitcher actually pitches a
fastball, then player I has probability 0.30 of getting a hit.

— This is a constant sum game because player II’s payoff and player I’s
payoff actually add up to 1.




Example 1.2

e Two companies are both thinking about introducing
competing products into the marketplace. They choose the
time to introduce the product, and their choices are 1 month,
2months, or 3 months.

— Payoff matrix

| , 3
I |05 06 08
2 104 05 09
3 102 07 05

e Forinstance, if player | introduces the product in 3 months and player Il introduces
it in 2months, the it will turn out that player | will get 70% of the market.

— The companies want to introduce the product in order to maximize
their market share.

— A constant sum game.



Example 1.3

* An evader (called Rat) is A Rai
forced to run a maze
entering at point A, and a
pursuer (called Cat) will also
enter the maze at point B.
Rat and Cat will run exactly |
four segments of the maze | ]

and the game ends. ‘ q
— |If Cat and Rat ever meet at an & ‘ k
intersection point of segments . Cal
. . e — : i
at the same time, Cat wins +1 .
and Rat loses -1, while if they I - B

never meet during the run,
both Cat and Rat win 0.

Figure 1.1 Maze for Cat vs. Ral
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Example 1.3 (contq)

— A zero sum game.
— Cat wants to maximize the payoffs, while Rat wants to minimize them.
— With four segments the payoff matrix will turn out to be a 16 x 16 one.

Cat/Rat | abcd abcj -+ hlkf
dcba I ) o 0
dchi ] I e 0
kg | 0 0 ]
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Example 1.4

2 X 2 Nim.

Four pennies are set out in two piles of two pennies each.

Player | chooses a pile and then decides to remove one or two pennies
from the pile chosen.

Then player Il chooses a pile with at least one penny and decides how
many pennies to remove.

Then player | starts the second round with the same rules.

When both piles have no pennies, the game ends and the loser is the
player who removed the last penny.

The loser pays the winner one dollar.



Example 1.4 (conva)

— Extensive form: represents a game by a tree

g N |
= =

Player [

Player Il 02
[
02 |I I 1 0 01 00 | Playerl
/ \ \ \ \ | wins
01 00 ‘ 10 00 ‘ 00 | Playernl
Il wins Il wins Il wins
00 00 |
I wins [ wins

Figure 1.2 2 x 2 Nim tree
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Example 1.4 (conva)

— Strategies

Strategies for player |

(1) Play (1,2) then, if at (0,2) play (0,1).

(2) Play (1.,2) then if at (0.2) play (0.0).

(3) Play (0,2).

— Payoff matrix

Strategies for player 11

() Ifat(1,2) — (0,2); if at (0,2) — (0,1)

(2) Ifat (1,2)— (1,1); if at (0,2)— (0,1)

(3) IMat(1,.2)— (1,0); if at (0,2)— (0,1)

(4) If at (1,2)— (0,2); 1f at (0,2)— (0,0)

(5)yIfat (1,2)— (1, 1); if at (0,2)— (0,0)

(6) If at (1,2)— (1,0); 1f at (0,2)— (0,0)

player I/player 11 1 2 3 4 5 6
1 T 1 -1 11—
2 —1 1 -1 1 1 1
3 —1 [ 1 1
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Example 1.4 (contq)

e Analysis of 2 x 2 Nim.

— Any rational player in II’s position would drop column 5 In the payoff
matrix from consideration (column 5 is called a dominated strategy).

By the same token, player | would drop column 3 from consideration.

— The value of this game is -1 and the strategies (I1.113), (12, 1I3), (13, 113)
are saddle points, or optimal strategies for the players.
* Player | can improve the payoff if player Il deviates from column 3.
* There are three saddle points in this example, so saddles are not necessarily unique.
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Example 1.5

e Russian roulette

— Two players are faced with a six-shot pistol loaded with one bullet.
— The players ante $1000, and player | goes first.

— At each play of the game, a player has the option of putting an
additional $1000 into the pot and passing, or spinning the chamber
and firing (at his own head).



Example 1.5 (contq)

— Game tree
 The numbers at the end of the branches are the payoffs to player I.
* The circled nodes are spots at which the next node is decides by chance.
* The dotted line indicates the optimal strategies.

12

Spin_,-"':r

- chooses

Fire

|| Chi g

Figure 1.3 Russian roulette
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— Strategies

— Payoff matrix

Computation

IT against 111 :

12 against 11 :

Wenson Chang @ NCKU

Example 1.5 (contq)

Player | Player Il
11 1]S 1 | If12, then S; If 11, then P.
12 | P 12 | If 12, then P; If 11, then P.
13 | IfI1, then S; If 12, then P.
14 | If 11, then S; If 12, then S.
Il m M u3 14
11 1 1
a i 1 3 36
3
501\ 1, . 1 S I Tyl
G (§ -|-E|f—1.]:T Ilagdlnalllﬂ.{i ((}(ﬂ}-l-{.(l]) ti[ 1)
5, .1, 3 q.,,-.@i_ L1 _3
E(—2}+E{1}_—§. [2 agains ﬂf 2) 6(1}— >
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Example 1.6

Evens or Odds.

Each player decides to show one, two, or three fingers. If the total
number of fingers shown is even, player | wins +1 and player Il loses -1.
If the total number of fingers shown is odd, player | loses -1 and player
Il wins +1.

Payoff matrix Evens
I/11

The row player here will always want to maximize his payoff, while the
column player wants to minimize the payoff to the row player.

The rows are called the pure strategies for player |, and the columns
are called the pure strategies for player Il.



Example 1.6 (conta)

— If a player always plays the same strategy, the opposing player can win
the game.

— |t seems that the only alternatives is for the players to mix up their
strategies and play some rows and columns sometimes and other
rows and columns at other times.
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DEf 11 (cont’d)

* Analysis
— Player | assumes that player Il is playing her best, so Il chooses a
columnjso asto
Minimize a; over j=1..m
for any given row i. Then player | can guarantee that he can choose the

row i that will maximize this. So player | can guarantee that in the
worst possible situation he can get at least

V' =max min a;,

i=1,..,n j=1,...,m

and we call V the lower value of the game, which represents the
least amount that player | can be guaranteed to receive.



DEf 11 (cont’d)

— Player Il assumes that player | is playing his best, so | chooses a row i

so asto
Maximize a; over 1=I,.,n

for any given column j. Player Il can therefore choose her columnj so
as to guarantee a loss of no more than

V' = min max a;

j=1,...mi=1,...n

and we call V' the upper value of the game, which represents the
largest amount that player |l can guarantee can be lost.

— Clearly, V~ < V"



DEf 11 (cont’d)

 Find the upper and lower value for any given matrix

— Game matrix

a1

Tl

a2

a2

Ly 2

1

124

”Jrru_

— For each row, find the minimum payoff in each column and write it in a
new additional last column. Then the lower value is the largest
number in that last column.

— In each column find the maximum of the payoffs (written in the last
row). The upper value is the smallest of those numbers in the last row.

ISR a2
(i) [(F S
1y g2
| |
Imax; ;) max; ;2
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v — largest min
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DEf 11 (cont’d)

Definition 1.1.1 A matrix game with matrix A = (a;) has
the lower value V™ =max min a;

and the upper value V' = min maxa.

— Vv~ is player I's gain floor, and v* is player II’s loss ceiling.
— The game has a value if v_ =v*, and we write itas V=V(A)=V" =V .
This means that the smaIIest max and the largest min must be equal

and the row and column i, j~ giving the payoffs a. .= =V =V
are optimal, or a saddle pomt in pure strategies.

— A fair game

e |f the value v is positive, player | should pay player Il the amount v. If v< 0, then
player Il should pay player | the amount —v.



Example 1.7

e 2x2Nim.
I l -1 l I 1| , min = —1]
1 I -1 —1 I 1 , min - |
B -1 I —1 1 I I min = — |
| | | J | | v= =1
max =1 max =1 max= -1 max l max=1 max=1 |.'" _1_
— Vi =v =-1 andso 2 x 2 Nim has avaluev=-1.

— The optimal strategies are located as the (row,column) where the
smallest max is -1 and the largest min is also -1.
e This occurs at any row for player I, but player Il must play column 3, so i = 1,2,3 j* =3.

* The optimal strategies are not at any row column combination giving -1 as the
payoff.
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Example 1.7 (contq)

« V~ <V verification : The most that | can be guaranteed to

win should be less than (or equal to) the most that Il can be
guaranteed to lose)

* For any fixed row i, mina; <a;
J

=V~ =maxmina; <maxa;
I J I

=V~ =maxmina; <minmaxa; =V"
I J J |



Def. 1.1.2 and Lemma 1.1.3

Definition 1.1.2 We call a particular row i* and column j* a
saddle point in pure strategies of the game if

A+ < @j~j» < a;-5, forallrowsi=1,...,nandcolumnsj —=1,..., m.

Lemma 1.1.3 A game will have a saddle point in pure
strategies if and only if

v~ = maxmina;; = minmaxa;; = v". (1.1.2)
i P



Proof of Lemma 1.1.3 (conta)

e Provelemmal.1l.3
— If (1.1.1) is true, then

{-‘+

J
] z

i 7
Thatis, V' <v™.But V' <V always,so V=V' =V =a. o
— If V+ =V then .
min maxa, j= MaxX m
i ' i

ing, ;
i ,

J

Let j* be such that V' =max; 4 ;- and i” such that V™ = min; & ;.

Then,

R =v" >q, -, for any i=1..n, j=1..m.
In addition, taking j-j onthe left,and i=i" on the right, gives

a. . =V =V,
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Best Reponse (cont)

When a saddle point exists in pure strategies, (1.1.1) says that
if any player deviates from playing her part of the saddle, then
the other player can take advantage and improve his payoff.

Each part of a saddle is a best response to the other.



Example 1.8

* |nthe baseball example player |, the batter, expects the

pitcher (player Il) to throw a fastball, a slider, or a curveball.

— Game matrix

m| £ C S

T [030 025 0.20
C | 026 033 028
S | 028 030 033

— A quick calculation shows that V =0.28 and V" =0.30. So baseball
does not have a saddle point in pure strategies.

— That shouldn't be a surprise because if there were such a saddle,
baseball would be a very dull game.
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Find the Upper and Lower Values With Maple

e |nformation ) _

2 -5
A=-3 1| v =-3 v =1.

e Maple commands

with(LinearAlgebra):
A:=Matrix([[2,-5],[-3,1],[4,-3]]);

rows:=3 : cols:=2:
vu:=min(seq(max(seq(A[i,j],i=1..rows)),j=1..cols));
vl:=max(seq(min(seq(A[i,j],j=1..cols)),i=1..rows));
print("the upper value is",vu);

print("the lower value is",vl);

Weow oW W W W W

— The number of rows and columns could be obtained from Maple by
using the statement

rows:=RowDimension(A); cols:=ColumnDimension(A).
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The Von Neumann Minimax Theorem



Mixed Strategies

e What do we do when — < »+2 If optimal pure strategies
don’t exist, then how do we play the game ?

e Johnvon Neumann figured out how to model mixing
strategies in a game mathematically and then proved that if
we allow mixed strategies in a matrix game, it will always
have a value and optimal strategies.



Def. 1.2.1

Definition 1.2.1 Let Cand D be sets. A function T :CxD - R
has at least one saddle point (x*, y*) withX C andy D if

f(x,y)<f(x,y)<f(x,y) for all xeC,yeD.

— Once again we could define the upper and lower values for the game
defined using the function f, called a continuous game, by

Al _yrgglrréaxf(x y), and v~ _maxyrgljgnf(x y).

— Check as before that V™ < V™. If it turns out that V' =V~ we say, as
usual, that the game has avalue y=vy* =y~



DEf 1 . 2 . 2 (cont’d)

Definition 1.2.2 A set C c R" is convexX if for any two points

a,b € C and all scalars A €[0,1], the line segment connecting
aandbisalsoinC,i.e., foralla,beC, Aa+(1-1)beC,

vo<A<1

— Cis closed if it contains all limit points of sequences in C;

— Cis bounded if it can be jammed inside a ball for some large enough
radius.

— A closed and bounded subset of Euclidean space is compact.



DEf 1 . 2 . 2 (cont’d)

— Foranya,beC,0<A1<]
a function § : C — R is convex if

g(da+(1-4)b) < Ag(a)+(1-4)g(b);

This says that the line connecting g(a) with g(b).
namely {\g(a) + (1 — A)g(b) : 0 < X < 1}, must.
always lie above the function values g(Aa + (1 — A)b), 0 <\ < 1.

a function 9 :C = R js concave if
g(la+(1—-A)b)>Ag(a)+(1—2)g(b).

— A function is strictly convex or concave, if the inequalities are strict.
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DEf 1 . 2 . 2 (cont’d)

— Figure 1 .4 compares a convex set and a nonconvex set. Also, recall the
common calculus test for twice differentiable functions of one
variable. If g = g(x) is a function of one variable and has at least two

derivatives, then g is convex if g" > 0 and g is concave if g" < 0.

Not Convex Convex
7 a /__d__\_h
f
L]
| Y L
Iu
'.' .| .l_."'
\\"/- Ay

Figure 1.4 Convex and nonconvex sets



The Von Neumann Minimax Theorem (contx)

e Theorem 1.2.3 Letf :CxD — R be a continuous function. Let
C e R" and D € R™ be convex, closed, and bounded. Suppose
that X f(X,V) is concave and Yy — f(X,Y) is convex. Then

vi=minmax f(x,y)=maxmin f(x,y)=v"
yeD xeC xeC yeD

— Forexample, f(X,y)=4xy-2x-2y+1 on 0<x,y<1.
This function has f,, =0>0, fyy =0<0, soitis convexin y for each x

and concave in x for each y.

— Since (X, Y) €[0,1]x[0,1], and the square is closed and bounded, von
Neumann's theorem guarantees the existence of a saddle point for

this function.
>




The Von Neumann Minimax Theorem (contq)

— Solve fX — fy =Qtogetx=y =%.The Hessian for f, which is the matrix
of second partial derivatives, is given by

/ [ 1% Jrr.nl'.l' Jr:r'-! 0 ‘1'
H(f |lx.u) | ' ‘] = [ } .
' J’r yr J|r‘ Yy 1 0

Since det(H) =-16 < 0 we are guaranteed by elementary calculus that
(X = Y=%) is an interior saddle for f. Here is a Maple generated picture

of f: ST
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The Von Neumann Minimax Theorem (contx)

— Another way to write our example function would be

flr.y) = (.1 —2)A(y,1 —y)', where A = [ 1 1 ] _
We will see that f(x,y) is constructed from a matrix game in which
player | uses the variable mixed strategy X = (x,1-x), and player Il uses

the variable mixed strategy Y = (y,1-y).

— Obviously, not all functions will have saddle points. For instance,
g(x,y) = (x — y)? is not concave-convex and in fact does not have a
saddle pointin [0,1] x [O,1].



Prove the Von Neumann Minimax Theorem

Proof 1. Define the sets of points where the min or max is

attained by
B, ={y'eD: f(x.y’) = 1111;; flx,y)} foreach fixed x € C,
ye
A, ={z"eC: f(zV.y) = max f(x.y)} foreach fixed y € D.

Tred

— By the assumptions on f, C, D, these sets are nonempty, closed, and
convex. For instance, here is why B, is convex. Take ylo, yg e B,, and let

A €(0,1). Then
flx dy! + (1= X) < Af(z. )+ (1= XN f(x.yy) = miH fla,y).
'IJlr

But f(r. Ayy + (1 = A)yy) = min,-p f(x.y) as well, and so they must be
equal. This means that Ay + (1 — A\)y) € B,.
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Prove the Von Neumann Minimax Theorem (contq)

— Define g(X,y) = A, xB,, which takes a point(X,y) e Cx D and gives the
set A, x B,, This function satisfies the continuity properties required by
Kakutani's theorem. Furthermore, A, x B, are nonempty, convex, and
closed, and so Kakutani's theorem says that there is a point

(X',y)eg(x',y") = A.xB,.. Writing out what this says, we get

flrr.y”) =max f(r.y") and f(xr".y") = min f(xr".y),
reC ye D
so that
v = minmax f(r.y) < f(r".y") < maxmin f(r.y) = v <o
_r;-f_.”‘ rel’ rel” ye >
and fle.y™) < fla".y") < fle".y). Ve C.ye D.

— This says that (X', ¥") is a saddle pointandV=Vv"=v_ = f(x,y").
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Kakutani's Theorem

e Theorem 1.2.4 Let C be a closed, bounded, and convex subset
of R", and let g be a point (in C) to set (subsets of C) function.
Assume that for eachX € C, the set g(x) is nonempty and
convex. Also assume that g is (upper semi )> continuous. Then
there is a point X € C satisfying X < g(x).

— Kakutani's theorem is a fixed-point theorem.

— A fixed-point theorem gives conditions under which a function has a
point x* that satisfies f(x*) = x*, so f fixes the point x*.

— Later use Kakutani's theorem to show that a generalized saddle point,
called Nash equilibrium, is a fixed point.

— JThat is, for any sequences =,, € C,y, € g(xn),

if #,, — xand y,, — y. theny € g(x).



Prove the Von Neumann Minimax Theorem (contq)

 Proof 2.
1. Assume first that fis strictly concave-convex, meaning that
fAz+ (1 =Nz, y) > Mo )+ (1 =N f(z.y), 0< A <1,
Sle.py + (1 — plw) < pfle,y) + (1 —p)fle,w), 0 < p <1,

— The advantage of doing this is that for eachX € C there is one and

only one y = y(x) € D (y depends on the choice of x) so that
flr.y(xr)) Jl]i}l flr.y) = g(x).
e L)

— This defines a function g : C — R that is continuous (since fis
continuous on the closed bounded sets C x D and thus is continuous).
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Prove the Von Neumann Minimax Theorem (contq)

— g(x) is concave since

glAz + (1 — A)z) Zmin(Af(x.y) + (1 — A)f(z.y)) = Ag(x) + (1 — A)g(z).

ye D
— So, thereis a point X € C at which g achieves its maximum:

gla®) = f(a", ylx")) = maxmin f(r,y).
re(” ye D '
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Prove the Von Neumann Minimax Theorem (contq)

e 2. lLetxeC andy €D be arbitrary. Then, forany 0< 1 <1,
we obtain

FO + (1= N y) > M, y) + (1= N f(a".y)
> M y) + (1= A) fa". y(x™))
= Af(x,y)+ (1 —A)glx™).

Take Y = y(Ax+ (- 2)x) € D to get

glx") > f(Ar 4+ (1 = Na" .y A+ (1 —=XN)zx")) = g(Ax 4+ (1 = A)z")
> g(x")(1 = A) + Af(z,y(Az + (1 — A)z")),

where the first inequality follows from the fact that
g(x’)=g(x), vxeC.
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Prove the Von Neumann Minimax Theorem (contq)

As a result, we have,
g(xz™)|1 — (1 J\ﬂ gz )A = Af(re.y(Ax + (1 — A)x")),

or
fle®,ylx")) =g(x") = fle,y(Az + (1 — A)x")) forall x € C.
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Prove the Von Neumann Minimax Theorem (contq)

3. Sending 1 — 0, we see thatAx+(1—-A)X — X and
y(AX+(1L-A)X") = y(X). We obtain

fle,y(x™)) < f(x™,y(x")) :— v, forany x € C.
Consequently, with ¥~ = y(x)
fle,y") < fla™,y")=v, Veel.

In addition, since f(x",y")=min, f(x",y)< f(x',y) for all yeD,
we get

fle.y") < flz"y")=v < f(z",y),Vere O, ye D.
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Prove the Von Neumann Minimax Theorem (contq)

This says that (X, y') is a saddle point and the minimax
theorem holds, since

minmax f(r.y) <max f(zr.y") <v <min f(r",y) < maxmin f(x,vy),
L] ol I L xI i

and so we have equality throughout because the right side is
always less than the left side.



Prove the Von Neumann Minimax Theorem (contq)

e 4. The last step would be to get rid of the assumption of strict
concavity and convexity. For £ >0 set

fe(x,y) = f(z.y) —elaf* +elyl? |z[* =) al, [y = Zy;
=]

This function will be strictly concave-convex, so the previous
steps apply to f_. Therefore, we get a point (X, Y,)€eCxD
sothatV, = f (X_,Y.) and

felr,ye) <ve = folzeye) < felae,y), Ve e C,ye D.
since T,(%Y,) = f(xy,)—¢X and (%, y) < F(x,,y)+ey|,
we get

flx,ye) —elz|® < ve < f(xe,y) +€lyl®, ¥ (z,y) € C x D.
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Prove the Von Neumann Minimax Theorem (contq)

Since fg (X1 yg) 2 f (X’ yg) _g‘x‘z and fg (Xg’ y) S f (Xg’ y) +8‘y‘2,
we get

2

flz,y:) —elx|* <v. < f(xe,y) + €|y 2 Y(r.y)eCxD.

Since the sets C, D are closed and bounded, we take a
seguence 8—)O,Xg — X EC,yg —Y €D and also V. > Ve R.

Sending ¢ —> 0, we get
flz,y")<v< f(z*,y) V(e,y) e C x D,

This says that v: =v- =v and (X', Y") is a saddle point. (]
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The Von Neumann Minimax Theorem (conta)

e \VVon Neumann's theorem tells us what we need in order to
guarantee that our game has a value.

e |tiscritical that we are dealing with a concave-convex
function, and that the strategy sets be convex.



Mixed Strategies <



Mixed Strategies

e Von Neumann’s theorem suggests that: we need convexity of
the sets of strategies, whatever they may be, and convexity-
concavity of the payoff function, whatever it may be.

— A saddle point in pure strategies will not always exist.

* |n most two-person zero sum games a saddle point in pure
strategies will not exist because that would say that the
players should always do the same thing.

A player who chooses a pure strategy randomly chooses a row
or column according to some probability process that
specifies the chance that each pure strategy will be played.
These probability vectors are called mixed strategies.



Mixed Strategies (conta)

* Definition 1.3.1 A mixed strategy is a vector X =(X,,...,X,) for player |
and Y =Y Ypy) for player Il, where

xr; > 0, Z.n -1 and y; > 0, Z;;J- = 1.
=1 j=1

Xi = Prob(l uses rowi), Y;= Prob(ll uses column j).

 Denote the set of mixed strategies with k components by

— A mixed strategy for player | is any element X €S, and for player Il any element
Yes,.

— A pure strategy X €S, is an element of the form X =(0,0,...,0,1,0,...,0), which
represents always playing the row corresponding to the position of the 1 in X.
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Expected Payoff

e |f the players use mixed strategies, the payoff can be
calculated only in the expected sense.

* Definition 1.3.2 Given a choice of mixed strategy X €S for
playerland Y € S_ for player Il, chosen independently, the
expected payoff to player | of the game is

I rri

Y) = Z X a;j Prob(I uses i and Il uses j)
1=1 3=1

Tre

Z Z a;; Prob(l uses i)I’(1l uses j)

=1 j=1

i: i'rr“us‘h —~ X AYT,

i=1 j=1



Expected Payoff (contq)

— In a zero sum two-person game the expected payoff to player Il would
be -E(X, Y).

— The independent choice of strategy by each player justifies the fact

that
Prob(l uses i and Il uses j) = Prob(I uses i) (1l uses j).

— If the game is played only once, player | receives exactly @;, for the
pure strategies i and j for that play. Only when the game is played
many times can player | expect to receive approximately E(X, Y).

-.Ul |
L{A '}) X A ,}T — (:,1'1 EY )J"i-n,v 1 :

_y'j'fi 4



Expected Payoff (contq)

* |nthe mixed matrix zero sum game, the goals now are that
player | wants to maximize his expected payoff and player Il
wants to minimize the expected payoff to I.

 Define the upper and lower values of the mixed game as

4 . T _ . ” .
vt = min max XAY?. and v~ = max min XAY7.
}.' ':_ -'L;r.u ".“" E; -H:H '1': {: LL;” ¥.F E S L

— Itis always true that v+ =y~ for the mixed game.
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A Saddle Point in Mixed Strategies

* Definition 1.3.3 A saddle point in mixed strategies is a pair
(X",Y") of probability vectorsX  €S_., Y eS_, which satisfies

E(X.Y*) < E(X*,Y*) < E(X",Y), V(X €S, Y € Sp).

— If player | decides to use a strategy other than X* but player Il still uses
Y*, then | receives an expected payoff smaller than that obtainable by
sticking with X *. A similar statement holds for player |l.

— So (X*, Y*) is an equilibrium in this sense.



A Saddle Point in Mixed Strategies (cont)

e A game with matrix A have a saddle point in mixed strategies
(by Theorem 1.2.3).

— Define the function f(X, Y) = E(X, Y) = XAYT and the sets S, for X, and S,
forY.

— Requirement 1: For any n xm matrix A, this function is concave in X
and convex in Y.
e |tis even linear in each variable when the other variable is fixed.

e Any linear function is both concave and convex, so our function f is concave-
convex and certainly continuous.

— Requirement 2: The sets S, and S, are convex, closed and bounded
sets.
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The Value of the Game

e Theorem 1.3.4 For any n x m matrix A, we have

min max XAY? = max min XAY"'.

}'F_E;r” -‘{Elgn -‘({:_l‘:;r} }PE*STHE

— The common value is denoted v(A), or value(A), and that is the value of
the game.

— There is at least one saddle point X" €S_, Y €S, _ sothat
E(X,)Y")<EX"Y")=v(A) < E(X")Y), forall X € 5,,,Y € S,,.

— Note that the theorem says there is always at least one saddle point
in mixed strategies.

— If the game happens to have a saddle point in pure strategies, we
should be able to discover that by calculating V" and V  using the
columns and rows as did earlier.
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Expected Payoff on Strategies

e Notation 1.3.5 Foran n x m matrix A= (aij) we denote the

jth column vector of A by A; and the ith row vector of A by. A
So (]

(115
a2;
lj ) and ;;—1: ((13'1.{1;;3.*“ .t’e‘;,”)

_“”J_

— If player | decides to use the pure strategy X=(0,...,0,1,0,...,0)
with row i used 100% of the time and player Il uses the mixed strategy
Y, we denote the expected payoff by E(i,Y)=A-Y".

— Similarly, for player Il, denote the expected payoff by E(X, ) = XA,.

T .

E@,Y)=;A-Y" = Z”«uyja E(X,j)= Z:I-‘Hf-u-. and F(1,j) = a;;.
j=1 =1



Expected Payoff on Strategies (conta)

e Lemma 1.3.6 If X €S, is any mixed strategy for player | and
a is any number so that E(X, j) > a, V], then foranyY €S,
it is also true that E(X,Y) > a.
— The lemma says that mixed against all pure is as good as mixed

against mixed.

e If aninequality holds for a mixed strategy X for player |, no matter what column is
used for player Il, then the inequality holds even if player Il uses a mixed strategy.

e |If Xis a good strategy for player | when player Il uses any pure strategy, then it is
still a good strategy for player | even if player Il uses a mixed strategy.

— Proof:

E(X,j)=),xa;>a
E(X,Y)=) > xa;y; =) ay; =a, where Zj y; =1
P j
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The Value and the Optimal Strategies

Theorem 1.3.7 Let A = (a;;) be an n x m game with value v(A). Let w be a real
number. Let X* € S, be a strategy for player I and Y* € S,,, be a strategy for
player 11.

(a) Ifw < E(X*,j)=X"A; =>" | xja;. j=1..... .m, then w < v(A).

(b) Ifw=> E@.Y*) =AY =37" vajy;. i =1,2.....n, thenw > v(A).

If’\

(c) fFEL.Y") = ;AYT <w
1.2...., M. rhen w = v(A) anc

F(\’* 7)) = X*A;01 = 1,2,..., n, j =
(X*.Y")isa mdd!e point for the game.

——
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The Value and the Optimal Strategies (contq)

(d) If v(A) < E(X7.7j) forall columns j = 1.2.....m. then X" is optimal for
player I. If v(A) > E(i,Y ™) forall rows i = 1.2.....n, then Y™ is optimal
for player I1.

(e) A strategy X ™ for player I is optimal (i.e., part of a saddle point) if and only
ifv(A) = minj<j<,, E(X7", j). A strategy Y™ for player Il is optimal if and
only if v(A) = max )<<, E(7.Y7).
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The Value and the Optimal Strategies (contq)

e Animportant way to use the theorem is as a verification tool.

— If someone says that vis the value of a game and Y is optimal for player II,
then you can check it by ensuring that E(j,Y)<v for every row.
e |f even one of those is not true, then either Y is not optimal for Il, or v is not the value of

the game.
— Ex:

1 O . « 11 1

A= X =Y =(—,—-), V(A)=—.
{o 1} 59 VA=5

All we have to do is check that
- | |
E(1,Y*) = AYy*! 5 and E(2.Y7) = l}

]
E(X7".1) = 5 and F(X".2) =

1
2

1
5"

Then the theorem guarantees that V(A)== and (X",Y") is a saddle point.

Wenson Chang @ NCKU Game Theory, Ch1.2 64



The Value and the Optimal Strategies (contq)

If we take X=(3/4, 1/4), then E(X,2)=1/4 <1/2, and so, since
v=1/2 is the value of the game, we know that X is not optimal
for player I.

Part (c) of the theorem is particularly useful because it gives
us a system of inequalities involving v(A), X*, and Y*, which, if
we can solve them, will give us the value of the game and the
saddle points.



Proof of Theorem 1.3.7 (a) (b)

(a) Suppose

w< E(X™,j)=X"A; = Z.;';n.,-_j;.j =1,2,..., m.

Let YV = (y;) € S,, be an optimal mixed strategy for player I1. Multiply both sides
by y; and sum on j to see that

o — yiw < < r “”u ,\”‘;1}"31. _ E{J‘i{'&‘}_'ﬂj & -l”{f'lj..
J

1=1 i1=1

since Z.; y; = 1, and since E(.X. Y'Y < el(A)forall X € S,,. ]

(b) follows in the same way as (a).
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Proof of Theorem 1.3.7 (c)

e (c) If Zjaijy’;sws > a;x;, we have

- P JE ® - ¥ . - N
E(X".Y") = E E riagy; < E riw=w< E a;;r,,
! N,

i }

and

E(X".Y") = ZZ-*':”UH: > Zy;‘ w=w=>FX".Y"),
t ] J

This says that w = E(X".Y"). So now we have E(i.Y ") < E(X".Y") <
E(X™,j) for any row i and column j. Taking now any strategies X' € S,, and
Y € 5, and using Lemma 1.3.6, we get E{X. Y™ ) < E(X".Y") < E(X",}Y)so
that (X, Y ") is a saddle pointand v(A) = E(X".Y") = w. ]
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Proof of Theorem 1.3.7 (d)

e (d) LetY® €S_ be optimal for player II.

Then E(i,Y°) <v(A) < E(X7, j), for all rows i and columns j,
where the first inequality comes from the definition of
optimal for player Il.

e Now use part (c) of the theorem to see that X* is optimal for
player |. The second part of (d) is similar. ]
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Proof of Theorem 1.3.7 (e)

* (e) Begin by establishing that min, E(X,Y)=min,; E(X, j) for
any fixed X € S,. To see this, since every pure strategy is also a
mixed strategy, it is clear that min, E(X,Y) <min; E(X, j).

Now set a=min; E(X, j). Then

: ) '_ . - 1 ; . :-‘ }" — (1.
() _}[lllJl Z(E( X.J)—a)y, “”a“ E(X.Y)—a
J

}
since E(X, J)>a foreachj=1,2,...,m. Consequently,

min, E(X,Y)>a, and putting the two inequalities together, we
conclude that min, E(X,Y)=min; E(X, J).



Proof of Theorem 1.3.7 (€) (cont)

Using the definition of v(A), we then have

v(A) = max 11%';11 E(X,Y) = max min E(X, 7).
, J 7

We can also show that v(A) = min, max. E(i,Y). Consequently,

v(A) = max min FE(X,j7) = min max E(:,Y).

XeS, 1<73<m Yes,, 1<i<n
If X* is optimal for player |, then

v(A) = max ]T‘l}i_ll F(X.,Y) < n}}i_u E(X*Y)=minE(X",j).
d : J

If v(A)<min, E(X", ]), then V(A) <E(X", j) for any column, and so

V(A)<E(X",Y) foranyY €S,, by Lemma 1.3.6, which implies that
X* is optimal for player|l. [
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The Value and the Optimal Strategies (contq)

e Corollary 1.3.8 Vv(A)=minmaxE(i,Y)=maxmin E(X, j). In

. 3 . YeS,, I<i<n . XeS, ILj<m N
addition, v- =max; min; a; <Vv(A) <min, max; a; =V".
— Be aware of the fact that not only are the min and max in the corollary
being switched but also the sets over which the min and max are
taken are changing.



The Value and the Optimal Strategies (contq)

 Consider the system of inequations
E(X,j)>wv,j5=1,...,m, forthe unknowns X = (x1,...,2,).

along with the condition X +...+X, =1.
— We need the last equation because v is also an unknown.

— If we can solve these inequalities and the X, variables turn out to be
nonnegative, then that gives us a candidate for the optimal mixed
strategy for player |, and our candidate for the value v = v(A).

— Once we know, or think we know v(A), then we can solve the system
E(i,Y)<v(A) for player II's Y strategy.

— If all the variables Yy; are nonnegative and sum to one, then part (c) of
Theorem 1.3.7 tells us that we have the solution and we are done.




Example 1.9

Game matrix A, with v- =-1 and v’ =3, no saddle point in
pure strategies. {3 B }

121 9

Use parts (c) and (e) of Theorem 1.3.7 to find the mixed
saddle.

— Suppose that X = (x,1-x) is optimal and v = v(A) is the value of the
game.

— Then v<E(X, 1) and v<E(X, 2), which gives us v<4x-1 and v<-10x+9.

_ Solve v=4x—-1 and v=-10x+9, get X :1%4 and v= 2%4.

- X =(1%4,%4) is a legitimate strategy and v satisfies the conditions in
Theorem 1.3.7, we know that X is optimal. Similarly Y = (1%4,%4).



Example 1.10

* Game matrix Evens Odds
m |1 3
I S
2 | 1 T
I T

— v-=-1 and V" =+1, this game does not have a saddle point using
only pure strategies.

 Find the mixed saddle point
— Suppose that v is the value of this game and X = (X, X,, X,),
Y =(Y1, Y2 ¥3) is a saddle point.
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Example 1.10 (conta)

— According to Theorem 1.3.7, these quantities should satisfy
3 3

EG,Y")=AY'T =% a,y, <v<EX"j)=X"4;=) za,

=1 1=]
— Using the values from the matrix, we have the system of inequalities
Yyr =+ 3 <v, =y +y2—ys<v, and y; — y2 + y3 < v.

ry —rp+axy2v, —ry+ry—x3=0v, and ry —r2 +Ir3 = 0.

— With Ty + o iy i — l,
| — 210 2v and — 1+ 212 > v s —p 2> 1 — 21
— Assume ¢ = 0 and 12 %, then r + 14 = +

— Since row 3 (or row 1) is a redundant strategy, If we drop row 3 we
perform the same set of calculations but we quickly find that

= .X]-

| =

1:.'3 —
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Example 1.10 (conta)

— We assumed that v>0 to get this but now we have our candidates for

the saddle points and value, namely, v = (0. A" = | L %-UJ and also,
inasimilarway Y* — (1 1 0).
— There are an infinite number of saddle points, X * = (71,5, 5 —1).
< 1 T - e
0<x <3,andY ;(jﬂ.%.% Y1), 0 <y a%_

Nevertheless, there is only one value for this, or any matrix game, and
itis v = 0 in the game of odds and evens.
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Properties of Optimal Strategies

I. If w is any number such that E(i.Y) < w < E(X,j).i = 1..... n.j =
L,.... m. where X 1s a strategy for player [ and Y is a strategy for player II,
then|w = value(A)and (X. Y ) must be asaddle point.|This is the way to check
whether you have a solution to the game. This 1s part (¢) of Theorem 1.3.7 but
worth repeating.

2. If X 1s a strategy for player I and m!m-( A) < E(X.,j),g=1...., n, then
X is optimal for player I. If Y is a strategy for player Il and value(A) >
E(i,Y), 1 =1,....,m,thenY is optimal for player II.
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Properties of Optimal Strategies (conta)

3. If Y is optimal for Il and|y; > Ofthen F(X,j) = value(A) for any optimal
mixed strategy X for I. Similarly, if X is optimal for I andfx; > 0f then

E(i,Y) = value(A) for any optimal Y for Il. Thus. if any optimal mixed
strategy for a player has a strictly positive probability of using a row or a
column, then that row or column played against any optimal opponent strategy
will yield the value. This result is also called the Equilibrium Theorem.

4. If X is any optimal strategy for player [ and E(X. j) > value(A) for some
column j. then for any optimal strategy Y for player II, we must have y; = 0.
Player II would never use column j in any optimal strategy for player II.
Similarly, if Y is any optimal strategy for player [l and E'(i,Y) < value(A).
then any optimal strategy X for player I must have 2; = 0. If row i for player
| gives a payoff when played against an optimal strategy for player 11 strictly
below the value of the game,. then player I would never use that row in any
optimal strategy for player .
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Properties of Optimal Strategies (contq)

5. If for any optimal strategy Y for player II, y; = 0. then there is an optimal
strategy X for player | so that E(X.j) > wvalue(A). If for any optimal
strategy X for I, &; = 0. then there is an optimal strategy Y for II so that
E(i.Y) < value(A). This is the converse statement to property 4.

6. If player I has more than one optimal strategy, then player I's set of optimal
strategies is a convex, closed, and bounded set. Also, if player Il has more
than one optimal strategy, then player II's set of optimal strategies is a convex,
closed, and bounded) set.
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Properties of Optimal Strategies (contq)

e Remarks

— These properties and Theorem 1.3.7 give us a way of solving games
algebraically without having to solve inequalities.

— The value of the game and the optimal strategies X* and Y* must
satisfy (i, Y*) = v(A) for each row with z} > ( and
F(X*,7) = v(A) for every column j with y; > 0.



Properties of Optimal Strategies (conta)

Proof of Property 4. If it happens that (X", Y ") are optimal and there is a
component of X* = (z1,..., Tp,....Tp),say,z; > 0but E(k,Y") < v(A), then
multlplymg both sides of E(k, Y*) < v(A) by ry yields zp E(k,Y ") < z;v(A).
Now, it is always true that foranyrow 7z = 1,2,....n,

E(i,Y™) <wv(A), which implies that z; E(i,Y ") < z;v(A).

But then, because v(A) > E(k.Y ™) and z; > 0, by adding, we get

i Iy E(z Y*) + .’EEE }’* Z T, F *) < i: :IT.‘,;?..!(A) — J”(A)_

i=1,itk i=1 i=1
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Properties of Optimal Strategies (contq)

We see that, under the assumption F(k,Y ™) < v(A), we have

n T TL

v(A)=FE(X",Y") ZZ TiAijY; = Z T E(i,Y™) <v(A),

i=1 j=1 1=

which is a contradiction. But this means that if z; > 0 we must have E(k,Y ™) =

v(A). ]
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Example 1.11

e Consider the game matrix

1 2 3
A= 13 1 2
2 3 1
— Conjecture that if X = (&, x9,x3) 1s optimal, then z; > 0.

By property 3 for Y = (v, y2, y3)
E(1,Y)=1y; + 2y + 3yz = v
E(2,Y) =3y +1y2 + 2y3 = v
E(3,Y) =2y, +3y2 + lyz = v
y1 +y2 +ys = 1.
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Example 1.11 (conta)

— Obtain the solution ¥, = y2 = y3 = 1 cand v = 2.

— Theorem 1.3.7 guarantees that v = (-‘,: %) is indeed an optimal
mixed strategy for player Il and v(A) = the value of the game. A
similar approach proves that X = (5. % %J is also optimal for player I.

— Maple commands for getting the solution:

> eqs:={yl1+2*y2+3*y3-v=0,
3*xyl+y2+2%y3-v=0,
2%y1+3%y2+y3-v=0,
y1l+y2+y3-1=0},

> solve(eqgs, [yl,y2,y3,v]);

Wenson Chang @ NCKU Game Theory, Ch1.2 84



Example 1.12

e Consider the game matrix

2 2 -1
A=|1 1 1
'3 0 1

— Asaddle pointat X* = (0,1,0),Y* = (0,0,1),andv(A) = 1

— If we assumed that X is optimal and z; > 0,7 = 1,2, 3, then it would

have to be true that ‘
—2y1 +2y2 —y3 =1

Y1 +y2+ys=1

3y1 +yz =1
because we know that v =1 . But there is only one solution of this system,
Y =(3,5, —%J-. which is not a strategy. This means that our assumption

A h

about the existence of an optimal strategy X for player | must be wrong.
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Example 1.12 (conta)

— For X~ = (0.1.0), E(2.Y) = 1, E(1.Y) < 1.and E(3.Y) < 1.
We need to look for Yyi1.Y2. 43 so that

1 +Fy2 +uys =1, =2y + 2y —y3 < 1.3y +y3 < 1.

— Replace y3 = 1 — y1 — y» and then get a graph of the region of
points satisfying all the inequalities in (. y>) space in Figure 1.5.

— There are lots of points which work. In particular, Y =(0.15,0.5,0.35)
will give an optimal strategy for player Il in which all y; > 0.
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Wenson Chang @ NCKU

Example 1.12 (cont)

y2

0.4 0.2 0.2 0.4 0.6

0.2

Figure 1.5 Optimal strategy set for Y.

Game Theory, Ch1.2
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Dominated Strategies

e Sometimes we can reduce the size of the matrix A by

eliminating rows or columns (i.e., strategies) that will never be

used because there is always a better row or column to use.
This is elimination by dominance.

— If we canreduceittoa2 xmornx?2game, we can solve it by a

graphical procedure. If we can reduce it to a 2 x 2 matrix, we can use
the formulas (following on).



Dominated Strategies (cont)

Definition 1.3.9 Row i dominates row k if a;; > ay; for all

j=1,2... . This allows us to remove row k. Column j
dommates column kif a;j < a;x,i =1,2,...,n. This allows us to
remove column k. Strict dominance means the inequalities are
strict in at least one payoff pair in a row or a column.

Remark. A row that is dropped because it is strictly
dominated is played in a mixed strategy with probability O.
But a row that is dropped because it is equal to another row
may not have probability O of being played.



Dominated Strategies (cont)

— For example, suppose that we have a matrix with three rows and row
2 is the same as row 3. If we drop row 3, we now have two rows and

the resulting optimal strategy will look like X* = (ury.x2).

— For the original game the optimal strategy could be X* = (x,.x,.0) or
X* = (x1.29/2,22/2). orinfact X* = (1, Az, (1 — AN)x2) for any
0 < A < 1, and this is the most general description.

— A duplicate row is a redundant row and may be dropped to reduce the
size of the matrix. But you must account for redundant strategies.
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Dominated Strategies (cont)

 Another way to reduce the size of a matrix is to drop rows or
columns by dominance through a convex combination of
other rows or columns.

— If there is a constant \ < [0. 1] so that

ap;j < Aap; + (1 —XNagj, j=1...., m.

then row k is dominated and can be dropped.

— Similarly, column k is dominated by a convex combination of columns
p and g if

i = Aaip + (1 — Aaig, 1 l..... 1.



Example 1.13

 Consider the 3x4 game

—
~
[—_—

0 7
A = ) L

e SN

TR
oy

n
b
oo
o0

— We may drop column 4 right away because every number in that

column is larger than each corresponding number in column 2. So now
we have

10 0

o W= =]

W] B ]

6
2



Example 1.13 (conta)

— Row 3 is dominated by a convex combination of rows 1 and 2. If that is
true, we must have, for some 0 < X\ < 1, the inequalities

5<A10) 4+ (1= X)(2), 2<0(A) +6(1—AN), 3<T7(N)+4(1-N).
Simplifying, 5 < 8A+2,2<6—6A,3 < 3X+4. This says any s<A< s
will work. So now the new matrix is

10 0 7
2 6 4]

— Column 3 might be dominated by a combination of columns 1 and 2.

7>10A+0(1—A) = 10), and 4> 2\ + 6(1 — \) = —4)\ + 6.

|~

Require that 5 < A <

=

0-
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Example 1.13 (conta)

— Finally, we are down to a 2 x 2 matrix
10 0
2 6]

— Solve these small games graphically, or by assuming that each row and
column will be used with positive probability and then solving the
system of equations.

Solution:



Solving 2 x 2 Games Graphically



Solving 2 x 2 Games Graphically

e Consider the matrix

1 4
¥

— We must check firstly whether there are pure optimal strategies
because if there are, then we can't use the graphical method. Since

V- =2 and V" =3, we know the optimal strategies must be mixed.
— Use Theorem 1.3.7 part (c) to find the optimal strategy and the value.

F(X.1)=XA, =r+3(1 —x) and F(X,2) = XAy =4da +2(1 — x).

We plot each of these functions of x on the same graph in Figure 1.6.
Each plot will be a straight line with 0 < » < 1.



Solving 2 x 2 Games Graphically (contq)

Plaver I's Expected Payoff

e mmm o —— —

|/ value of the game
e
|

o]

Figure 1.6 X against each column for player Il.
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Analysis of the Graph

* Analysis

— The point at which the two lines intersect is (x* = %, ).

— If player | chooses an » < x*, then the best | can receive is on the
highest line when x is on the left of =*.

e B(X.1)=x+3(1—a2)> 1.

* Player | will receive this higher payoff only if player Il decides to play column 1.

« If player Il use column 2, then | would receive a payoff on the lower line £(X.2) < 1.
— If player I chooses an x > 4
[ ] i L o m
E(X,2) > .
* The best | could get would happen if player Il chose to use column 2.

« If player Il use column 1, then | would receives some payoff on the line E(X,1) < R



Analysis of the Graph (conra)

e Conclusion
— Player |, assuming that player Il will be doing her best, will choose to
play X = (z*,1—2") = (%, 2) and then receive exactly the payoff
. Ay 10
-E‘(fl) - -
— Player | will rationally choose the maximum minimum. The minimums

are the bold lines and the maximum minimum is at the intersection,
which is the highest point of the bold lines.
[0}

— Player | will choose a mixed strategy so that she will get 5 no matter
what player Il does, and if Il does not play optimally, player | can get

10
more than 7 .
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Graphical Solution of 2 x m
and n x 2 Games



Graphical Solution of 2 x m Games

e Assuming that there is no pure saddle, i.e., v™ > ©. consider
the matrix A, and denote A4, the jth column, ;A the ith row.

A 1y 12 - 1

(21 d22 -+ U2m

— Suppose that player | chooses a mixed strategy X' = (+.1 — 1),
0 < x < 1. and player Il chooses columnj.
The payoff to player lis E(X.j) = XA, or, written out

E(X.j)=xa; + (1 —x)ay;.

— A mixed strategy is determined by the choice of the single variable
r € [0.1]. This is perfect for drawing a plot.



Graphical Solution of 2 x m Games (conta)

— On a graph (with x on the horizontal axis), ¥ = £(X.j) is a straight line
through the two points (0.a@2;) and (1-@1;). For each column j,

flx) = min XA, = min xay;+(1—2x)ay;.

1< 3<rn ' 1<j31<m

This is called the lower envelope of all the straight lines associated to
each strategy j for player Il. Thenlet 0 < " < 1 be the point where
the maximum of f is achieved:
™) max f(r) = max min ray; +(1 —x)ay; = maxmin £(X. j).
0<.ur<] H l<j<mn ' T 1

— Then X * = (.1 — ") is the optimal strategy for player | and f(+")
will be the value of the game v(A). This is shown in Figure 1.7 for a
2 X 3 game.
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Graphical Solution of 2 x m Games (conta)

Payoff to player |

E(X.1)

E(X.2)

--------------------

/ Value of the game

E(X.3)

optimal x

Figure 1.7 Graphical solution for 2 x 3 game.
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Graphical Solution of 2 x m Games (conta)

— Each line represents the payoff that player | would receive by playing
the mixed strategy X = (.1 — z). with player Il always playing a fixed

column.
* If player | decides to play the mixed strategy X = (r;.1 — ;) where 71 isto
the left of the optimal value, then player Il would choose to play column 2.
* |f player | decides to play the mixed strategy X2 = (r2,1 — r2). where T2 isto

the right of the optimal value, then player Il would choose to play column 3, up to
the point of intersection where E(X.1) = E(X.3). and then switch to column 1.

* Player | would choose the x that guarantees that she will receive the maximum of
all the lower points of the lines.
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Graphical Solution of 2 x m Games (conta)

— By choosing this optimal value, say, x*, it will be the case that player Il
would play some combination of columns 2 and 3.

* |t would be a mixture (a convex combination) of the columns because if player II
always chose to play, say, column 2, then player | could do better by changing her
mixed strategy to a point to the right of the optimal value.

— For finding the optimal strategy for player II, the only two columns
being used in an optimal strategy for player | are columns 2 and 3.

e By the properties of optimal strategies (1.3.1), that for this particular graph we can
eliminate column 1 and reduce to a 2 x 2 matrix.



Example 1.14

e Consider the payoff matrix and the graph for player I:

1 -1 3
5 {3 5 3}

'
ophimal x \.

Figure 1.8 Mixed for player | versus player II’'s columns.
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Example 1.14 (conta)

— The optimal strategy for | is the x value where the two lower lines
intersect and yields X* = (3. 4).Also,v(A) =E(X*.3) = E(X*.2) = 1.

— The figure indicates that column 1 is dominated by columns 2 and 3
because it is always above the optimal point.1 > =A+3(1—A) and

3> 5A—3(1—X) imply that for 3 <A < 3§ column 1 may be dropped.
— Now consider the subgame with the first column removed:

—1 3
T

Wenson Chang @ NCKU Game Theory, Ch1.2 107



Example 1.14 (conta)

Solve this graphically for player Il assuming that lluses Y = (y. 1 — y).
Consider the payoffs £(1,Y) and E(2.Y).

Player Il wants to choose y so that no matter what | does she is
guaranteed the smallest maximum. This is now the lowest point of the

highest part of the lines in Figure 1.9.

The lines intersect with y* = 3.

The optimal strategy for Ilis Y= = (0, 5. 5), and the value v(A) = 1.



Wenson Chang @ NCKU

Example 1.14 (conta)

Payoft to Player 11

E(2.Y)

optimal

Figure 1.9 Mixed for player Il versus I's rows.
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Graphical Solution of n x 2 Games

e Consider an n x 2 matrix

;. g2
azy  agy
A= |a31 ads2

_”Hl ﬂr.l'_f_

Assume that player Il uses the mixed strategyy = (y.1 — y).
0 < y < 1. Then Il wants to choose y to minimize the quantity

max E(i,Y) = max JAY T = max yla; )+ (1 —y)lapq).

l<i<n | <i<n | <i<n
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Graphical Solution of n x 2 Games (contq)

— The graph of the payoffs (to player 1) E(i.Y) will be a straight line.

— Player | will want to go as high as possible; Player Il will play the mixed
strategy Y. which will give the lowest maximum.

— The optimal ¥~ will be the point giving the minimum of the upper
envelope.



Example 1.15

e Consider [ 1 2
3 —1
A 5 6
— T _8 -
This is a 4 x 2 game without a saddle point in pure strategies
since v~ = —1,v" = 6. Try to solve the game graphically.

— Suppose that player Il uses the strategy Y = (y.1 — y). then we graph
the payoffs £(:.Y).7 = 1,2.3.4, as shown in Figure 1.10.

— The optimal strategy for Y will be determined at the intersection point
of [E(4,Y)= 7¥—8(1— y)and E(1,Y)=-y+2(1—Y)|. This occurs at
the point ¥" = § and the corresponding value of the game will be

v(A) = 3. The optimal strategy for player Ilis Y* = (2, 1),
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Example 1.15 (conta)

Payofl to player 11
E(4.Y)

aoplimal point

E(2.%)

E(3.Y)

Figure 1.10 Mixed for player Il versus 4 rows for player I.
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Example 1.15 (conta)

— Since 3 <75 —15 and —4 < —81 + 21, row 2 is dominated by a

convex combination of rows 1 and 4; so row 2 may be dropped.

bt | =

— Row 3 is dropped because its payoff line E(3.Y) does not pass
through the optimal point.

— Considering the matrix using only rows 1 and 4, we now calculate

F(1l.X)=~-r+7(1 —r)and E(4, X ) = 2xr — 8(1 — r) which intersect
at (z = 2.3).

— We obtain that row 1 should be used with probablllty 5 and row 4
should be used with probability 5. s0 X™ = (2.0.0.5). v(A) =

— In the above, we drop rows 2 and 3 to find the optlmal strategy for
player 1. In general, we may drop the rows ( or columns) not used to
get the optimal intersection point. = This is not always true !
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Example 1.15 (conta)

e Averification that these are indeed optimal uses Theorem
1.3.7(c). We check that £(i,Y*) < v(A) < E(X*, 7). This gives

—1 2
D ] S J— | 1 1
- 00 = _ — | = =
[G (i} — 6 [3 JJ
o T 8 -
_ _ - l A
1 ) 3
) ]
' 3 —4 9 —9
and 5 6 { 1 ‘ = 1
—_ . 9 9
{ —8 1
- - L 3 4
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Example 1.16

e Poker game rules

— Player | is dealt a card that may be an ace or a king. Player | sees the
result but Il does not. Player | may then choose to fold or bet.

— If I folds, he has to pay player Il S1. If | bets, player Il may choose to
fold or call.

— If Il folds, she pays player | S1. If player Il calls and the card is a king,
then player | pays player 11 $2, but if the card comes up ace, then
player Il pays player | S2.

— | must pay Il S1 when | gets a king and he folds.

— Player | is hoping that player Il will fold if | bets while holding a king.

This is the element of bluffing, because if Il calls while | is holding a
king, then | must pay Il S2.



Example 1.16 (conta)

e Strategies
— FF: Fold on ace and fold on king
— FB: Fold on ace and bet on King
— BF: Bet on ace and fold on king
— BB: Bet on ace and bet on king
— Player Il has only two strategies, namely, F (fold) or C (call).
— Assuming that the probability of being dealt a king or an ace is% :

m/| C F

FF | -1 -1

FB | -2 0
» 1

BF| 3 0

BB 0 1
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Example 1.16 (cont)

Deal one card to |

[ chooses
F

[T chooses
Y %2 S $2

Figure 1.11 A simple poker game. F=fold, B=bet, C=call.
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Example 1.16 (conta)

If | plays BF and |l plays C, this means that player | will bet if he
got an ace, and fold if he got a king. Player Il will call no
matter what. We calculate the expected payoff to | as

224 3(—1)= 3. Similarly,

—

E(FB,F) = 5(=1) + ;

B | '—‘ml p—

and E(FB,C) = —(—1) + -

and so on. Thisis a 4 x 2, game which we can solve graphically.



Solve the 4 x 2 Poker Game Graphically

e 1. Dominance

— The lower and upper values are v~ = 0,v% = L. sothereis no
saddle point in pure strategies.

— Row 1, namely FF, is a strictly dominated strategy, so we may drop it. It
is never worth it to player | to simply fold.

— Row 2 is also strictly dominated by row 4 and can be dropped.
— So we are left with considering the 2 x 2 matrix

I
Lo
A= |2
L} |].



Solve the 4 x 2 Poker Game Graphically (conta)

e 2.0Optimal strategy for player Il
— Suppose that Il plays ¥V = (3.1 — y). Then

—_—

E(BFY)=AY! =~y and E(BB,Y) = (1 -y).

b |

— Two lines intersect at 5y = 1 — y, so that y* = %.
2 1

— The optimal strategy for Il'is Y™ = (5, 3). so Il should call two-thirds
of the time and bet one-third of the time.

— The value of the game is then at the point of intersection v = .

— Player Il is at a distinct disadvantage since the value of this game is

Vo= l{ Player Il in fact would never be induced to play the game

unless player | pays Il exactly "; before the game begins. That would
make the value zero and hence a fair game.



Solve the 4 x 2 Poker Game Graphically (conta)

e 3. Optimal strategy for player |

— Suppose that I plays X — (.1 — »). Then
I

B(X.C)=XA =3

rand E(X.F)=1-ur.

— There are only two lines, we again calculate the intersection point and
obtain the optimal strategy forlas X* — (0.0. :; 1]

— Ainteresting phenomenon that the optimal strategy for player | has
him betting one-third of the time when he has a losing card (king).

— Bluffing with positive probability is a part of an optimal strategy when
done in the right proportion.



Solve the 4 x 2 Poker Game Graphically (conta)

e Player Il in fact would never be induced to play the game
unless player | pays Il exactly 1/3 before the game begins.

— That would make the value zero and hence a fair game.
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Best Response Strategies



Definition of Best Response Strategy

* Definition 1.6.1 A mixed strategy X* for player | is a best
response strategy to the strategy Y for player Il if it satisfies

Tt rri

max E(X.Y )= max ZZ xr;a;;y; = E(X7,Y).

Xes, XeS,
1=1 j3=1

A mixed strategy Y* for player Il is a best response strategy to
the strategy X for player | if it satisfies

Tre

min EF(X,Y) = min ZZI aijy; = E(X, V7).

YES,, YES, « —
! J=
— If (X*, Y*) is a saddle point of the game, then X* is the best response

to Y*, and vice versa.
— Unfortunately, knowing this doesn't provide a good way to calculate
X* and Y* because they are both unknown at the start.



Example 1.17

e Consider the 3 x3 game 1 1]
A=11 2 0
1 0 2

The saddle pointis X* = (0, 3.3 Y™ and v(A) = 1.
1

) =
Suppose that player Il playsY = (4, 3, 5). Find the optimal
response strategy for player I.
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Example 1.17 (conta)

e Solution
— Let X = (.i"]_..i"-_g. ]

r; — x9). Calculate

YV - s I ) 5
E(X,Y)=XAYT = - - =4+
{ ) 4 2 | 4|
— E(X.Y) is maximized by taking z; = z2 = 0 and then necessarily
Iraq = 1.

— The best response strategy for player | if player Il uses v — (5. )
is X* = (0,0.1).

— E(X*.Y) = 7. which is larger than the value of the game v(A) = 1.

b | =

1
1
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Example 1.17 (conta)

— How player 1 should play if player Il decides to deviate from the
optimal Y.

— This shows that any deviation from a saddle could result in a better
payoff for the opposing player.

— If one player knows that the other player will not use her part of the
saddle, then the best response may not be the strategy used in the
saddle.

— Inother words, if (X * Y *)is asaddle point, the best response to

Y #Y" maynotbe X*. but some other X. even though it will be
thecasethat E(X".Y) > E(X".Y").
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Analysis

Because E(X.Y) is linear in each strategy when the other
strategy is fixed, the best response strategy for player | will

usually be a pure strategy.

— Forinstance, if Yis given, then E(X.Y) = ax, + bxs + cx3, forsome
values a, b, ¢ that will depend on Y and the matrix.

— The maximum payoff is then achieved by looking at the largest of g, b,

¢, and taking =; = 1 for the = multiplying the largest of g, b, ¢, and
the remaining values of x; = 0. In general,
max{ax, + bxy + cxs | &y + 20 + 13 = 1, 2y, 22,23 > 0} (1.6.1)

= max{a,b. c}



Analysis (cont)

— Suppose that max{a.b,c} = ¢, Take 1y = 0,22 = 0,23 = 1, we get
max{axr, + brs + cxs | &1 + 2o+ a3 =1, T1. 22,23 > 0}

>a-04+b-0+¢c-1=c.

— On the other hand, since x| + 92 + r3 = 1. we see that
ary +bro+ce(l —xy —x9) =x1(a—¢)+x2(b—¢)+c<e,

Since a—c< 0.b—c<0and xy.19 > 0.
— We conclude that

c > max{axr, + bxro +cr3 | xy +x0 + 3 =1, T1, 20,3 > 0} > €,

and this establishes (1.6.1). This shows that X* — (0.0.1) is a best
response to Y.
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Analysis (cont)

e |tis possible to get a mixed strategy best response but only if
some or all of the coefficients a, b, ¢ are equal.
— Forinstance, if b = ¢, then

max{axr, + bxy + cxsy | xy + ¥y + 23 = 1, 1,72, 73 > 0} = max{a. c}

— Suppose that max{a, c} = c. We compute
max{axy + bxro + cxs | 1 + 20 + 23 = 1, 11, 29,23 > 0}
= lll‘r?l}{{ﬂ..i"l + (a9 + .-r.';;) | r 4+ xo+ 13 = ]}
= max{axr; +e¢(l —x;) |0 <z <1}
=max{ri(a —¢)+c|0<zy <1}
= c.

— This maximum is achieved at X' * = (0..r».13) forany s + 3 = 1.

r2 = (.rz = 0. and we can get a mixed strategy as a best response.
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Analysis (cont)

In general, if one of the strategies, say, Y is given and known,
then

ki Fri Tri

niax E €I E a;iy; | = max E ;i
YXes, : “d 1<i<n WJ

i=1 j=1 J=1
In other words,

max E(X.Y) = max FE(i,Y).

XNES, | <i<n

We proved this in the proof of Theorem 1.3.7, part (e).

— Best response strategies are frequently used when we assume that the
opposing player is Nature or some nebulous player that we think may
be trying to oppose us like the market in an investment game.
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Example 1.18

e Suppose that player | has some money to invest with three

options: stock(S), bonds(B), or CDs (certificates of deposit).
The market (player Il) can be in one of three states: good(G),
neutral(N), or bad(B). Here is a possible game matrix in which
the numbers represent the annual rate of return to the
investor : I/m| G N B
S|(12 &8 -5

B | - I 6

CD| 5 5 5

Note that this game does not have a saddle in pure strategies.



Example 1.18 (conta)

e Assumption:

— The market is the opponent with the goal of minimizing the investor’s
rate of return =2 can be viewed as a two-personal zero sum game.

— The market may be in any one of the three states with equal likelihood,
then the market will play the strategy Y=(1/3, 1/3, 1/3).

— Note that

e The response of player |
— The investor seeks an X* for which E(X 7. Y ) = maxyeg, E(XN.Y),
— If we assume that the market is an opponent in a game then the value

of the gameis v(A) = 5 |



Example 1.18 (conta)

— One of the optimal strategies: x* — (0,0.1).Y* = (0, % ).
| .

— Ifinstead Y = (5.3.3), then the best response for player | is

]

X = (0,0,1). with payoff to | equal to 5.

—If v = (:;3;_[}, L ), the best response is X — (1,0,0), with payoffto |

equalto 19 _ ;
3~

Wenson Chang @ NCKU Game Theory, Ch1.2 135



Example 1.18 (conta)

e |t may seem odd that the best response strategy in a zero sum
two person game is usually a pure strategy.

e Suppose that someone is flipping a coin that is not fair—say
heads comes up 75% of the time.

— If you think it is 75% of the time, then you will be correct 75 x 75 =
56.25% of the time!

— If you say heads all the time, you will be correct 75% of the time, and
that is the best you can do.



Example 1.19

 Here is the matrix, assuming «a. 3.~ > 0:

You/God Godexists God doesn’t exist

Believe O —f3
Don’t believe — 0
— P = 0 and v~ = max(—/3.—v) < 0., so this game does not have a

saddle point in pure strategies unless (3 = 0 or v = 0.
— If you believe and God exist, then you receive the amount o from God.

— If there is no loss or gain to you if you play don't believe, then that is
what you should do, and God should play not exist. In this case the
value of the game is zero.
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Example 1.19 (conta)

— Let ¥V = (y.1 — y) be an optimal strategy for God. Then it must be
true that

E(L,LY)=ay—p(1 —y)=v(A) = —yy = E(2,Y).
Solve and get the optimal strategy for God is

v 3 o+ 7
\a+84+7 a+ 3+

and the value of the game to you is

_ﬁlrii
— < 0
a4 349

v(A) =
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Example 1.19 (conta)

— Your optimal strategy X = (z,1 — 2) must satisfy
E(X,1) =ar —v(1—2) = -8z = E(X,2) =

ﬁ,l" . "'Ir ¥ + Ii
r = —, and X = : — .
a+ 3+ (m+J+*. r1+.'}+ﬁ.)
— If 7- the penalty to you if you don't believe and God exists is loss of
eternal life, represented by a very large number. In this case, the

percent of time you play believe, © = 7/(a + 3 + 7) should be fairly
close to 1, so you should play believe with high probability.

— If this is a zero sum game, God would then play doesn't exist with high
probability.
* |t may not make much sense to think of this as a zero sum game.

* Maybe we should just look at this like a best response for you, rather than as a zero
sum game.
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Example 1.19 (conta)

* Suppose that God plays the strategy v° = (1. 1). Find your

best response strategy.

— Calculate f(z) = E(X,Y"), where X = (x,1 —2),0 <z < 1. We get
o aty - 3

f(f) T 5 — E

— The maximum of f(z) overx € [0, 1] is

(o — 3 .
5 atr* =1lifa+~v > 3;
f(z™) = < ——} atr” =0t +~ < [3;
—;!. atany 0 <z <lifa+~vy=/7.
k i

— For 7>> /3, the best response strategy would be X* = (1,0).
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